淮北龙华学校欢迎您!!! 祝全校师生节日快乐!!     热烈祝贺萧县实验高中2015年高考再创辉煌!!  

精彩学科
语文
数学
英语
地理
政治
历史
物理
生物
化学
  首页 > 精彩学科 > 数学
初中数学常用的概念、公式和定理(转)
下一条    

初中数学常用的概念、公式和定理  
 
1. 整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 如:-3,
,0.231,0.737373…,
,
.无限不环循小数叫做无理数..如:π,-
-
,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数. 
2. 绝对值:a≥0丨a丨=a;a≤0
丨a丨=-a. 
如:丨-
丨=
;丨3.14-π丨=π-3.14. 
3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 

4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:-40700=-4.07×105,0.000043=4.3×10-5. 
5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数的小数点每移动3位,立方根的小数点就向相同方向移动1位. 如:已知
=0.4858,则
=48.58;已知
=1.558,则
=0.1588. 
6.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. ②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多-项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项 分别除以这个单项式. 
7.幂的运算性质:①am×an=am+n.②am÷an=am-n.③(am)n=amn.④(ab)n=anbn.⑤()n=n.⑥a-n=n,特别:()-n=()n.⑦a0=1(a≠0). 
如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==
,()-2=()2=,(-
3.14)0=1,(

)0=1. 
8.乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab. 
9.选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平方差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止. 
10.分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式. 

11.二次根式:①()2=a(a≥0),②
=丨a丨,③

,④
=
(a>0,b≥0). 
如:①(3
)2=45.②
=6.③a<0时,=-a
.④
的平方根=4的平方根=±2. 
12.一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=
,其中=b2-4ac叫做根-
的判别式.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有个相等的实数根;当-

 


  

 


 
Δ<0时,方程没有实数根.注意:当Δ≥0时,方程有实数根.③若方程有两个实数根x1和x2,则 
x1+x2=-,x1x2=,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).④以a和b为根的一 元二次方程是x2-(a+b)x+ab=0. 
13.解分式方程(去分母或换元)和无理方程(两边平方或换元)必须检验.形如:-的方程组,用代入法解;形如:
的方程组,先把一个方程分解
为两个一次方程,再把这两个方程分别与另一个方程组合成两个方程组,再用代入法分别
解这两个方程组. 
14.不等式两边都乘以或除以同一个负数,不等号要改变方向. 15.平面直角坐标系:①各限象内点的坐标如图所示. 
②横轴(x轴)上的点,纵坐标是0;纵轴(y轴)上的点,横坐标是0. ③关于横轴对称的两个点,横坐标相同(纵坐标互为相反数); 关于纵轴对称的两个点,纵坐标相同(横坐标互为相反数); 关于原点对称的两个点,横坐标、纵坐标都互为相反数. 
16.一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx又叫做正比例函数(y与x成正比例),图象必过原点. 
17.反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(从左向右降);当k<0时,双曲线在二、四象限(从左向右上升).因此,它的增减性与一次函数相反. 18.二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线(c是抛物线与y轴的交点的纵坐标).①a>0时,开口向上;a<0时,开口向下.②顶点坐标是(-
,
),对称轴是直线x=-. 特别:抛物线y=a(x-h)2+k的顶点坐标是(h,k),对称轴是直线x=h. 
注意:求解析式的设法①已知三个点的坐标,则设为一般形式y=ax2+bx+c;②已知顶点坐标(h,k),则设为顶点式y=a(x-h)2+k;③已知抛物线与x轴的两个交点坐标(x1,0)和(x2,0),则设为交点式y=a(x-x1)(x-x2). 
19.抛物线与x轴的位置关系:对于抛物线y=ax2+bx+c①Δ<0时,它与x没有交点.②Δ=0时,它与x轴只有一个交点(与x轴相切).③Δ>0时,它与x轴有两个交点(x1,0)和(x2,0),其中x1和x2是方程ax2+bx+c=0的两个根. 
20.统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n个数x1,x2,…,xn,那么: 
①平均数=(x1+x2+…+xn).②方差S2=[(x1-)2+(x2-)2+…+(xn-)2.(是整数时用) ③S2=[(x12+x22+…+xn2)-n()2].注:各数据的数位较少或平均数是分数时,用此公式. 

 


 


 
④若将n个数x1,x2,…,xn各减去一个适当的数a,得到一组新数x1,,x2,,…,xn,,那么原来那组数的方差S2=这组新数的方差,平均数=a+,.
方差越大,这组数据的波动就越大.通常用
样本方差去估计总体方差,用样本平均数去估计总体平均数.方差的算术平方根叫做标准
差 
(3)频率:①把一组数分成若干个小组,组距=(最大值-最小值)÷组数(求组数时,用收尾 法取整数),这时,落在某小组内的数据的个数叫做这组的频数,每一小组的频数与数据总 个数的比值叫做这一小组的频率.因此,各组的频率的和等于1.在频率分布直方图中,各小长方形的面积等于相应各组的频率.各小长方形的面积的和等于1. 21.锐角三角函数:①设∠A是RtΔ的任一锐角,则∠A的正弦:sinA=,∠A的余弦:cosA=
,∠A的正切:tanA=
,∠A的余切:cotA=

并且sinA=cosB,tgA=ctgB,tgActgA=1,sin2A+cos2A=1.0<sinA<1,0<cosA<1,tgA>0,ctgA>0.∠A越大,∠A的正弦和正切值越大,余弦和余切值反而越小. 
②余角公式:sin(900-A)=cosA,cos(900-A)=sinA,tg(900-A)=ctgA,ctg(900-A)=tgA. ③特殊角的三角函数值:sin300=cos600=,sin450=cos450=,sin600=cos300=
,sin00= 
cos900=0,sin900=cos00=1,tg300=ctg600=,tg450=ctg450=1,tg600=ctg300=-
,tg00=ctg900=0. ④斜坡的坡度i=
=.设坡角为α,则i=tgα=. 
22.三角形:(1)在一个三角形中:等边对等角,等角对等边. 
(2).证明两个三再形全等的方法有:SAS,AAS,ASA,SSS,HL.(3)在RtΔ中,斜边上的中线等于斜边的一半.(4)证明一个三角形是直角三角形的方法有:①先证明有一个角等于900. 
②先证明最长边的平方等于另两边的平方和.③先证明一条边的中线等于这条边的一半.(5)三角形的中位线平行于笫三边,并且等于笫三边的一半.(6)等腰三角形中,顶角的平分线与底边上的中线和高互相重合. 
23.四边形:(1)n边形的内角和等于(n-2)1800,外角和等于3600. 
(2)平行四边形的性质:对边平行且相等;对角相等;邻角互补;对角线互相平分. (3)证明一个四边形是平行四边形的方法有:①先证两组对边平行.②先证两组对边相等. ③先证一组对边平行且相等.④先证两条对角线互相平分.⑤先证两组对角分别相等. (4)矩形的对角线相等且互相平分;菱形的对角线互相垂直平分,并且四条边相等. (5)证明一个四边形是矩形的方法有:①先证明它有三个角是直角.②先证它是平行四边形,再证它有一个角是直角或对角线相等. 
(6)证明一个四边形是菱形的方法有:①先证明它的四条边相等.②先证它是平行四边形,再证它有一组邻边相等或对角线互相垂直. 
(7)正方形既是矩形又是菱形,它具有矩形和菱形的所有性质. (8)梯形的中位线平行于两底并且等于两底之和的一半.

  向上